INSTITUTE OF ENGINEERING,
JIWAJI UNIVERSITY, GUALIOR
M.TECH. (CHEMICAL ENGG.)
SCHEME w.e.f. 2018
INSTITUTE OF ENGG., JIWAJI UNIVERSITY, GWALIOR

CHOICE BASED CREDIT SYSTEM (w.e.f.2018-2020 Batch)

MASTER OF TECHNOLOGY (FIRST SEMESTER)

BRANCH: CHEMICAL ENGINEERING

<table>
<thead>
<tr>
<th>S.NO.</th>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>TOTAL MARKS</th>
<th>CREDIT C(I)</th>
<th>END SEM EXAM MARKS</th>
<th>SESSIONAL MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MECM-101</td>
<td>SEPARATION PROCESS</td>
<td>100</td>
<td>4</td>
<td>60</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>MECM-102</td>
<td>ADVANCED TRANSPORT PHENOMENON</td>
<td>100</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>MECM-103</td>
<td>REACTOR DESIGN & STABILITY</td>
<td>100</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>MECM-104</td>
<td>ADVANCED HEAT TRANSFER</td>
<td>100</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>MECM-105</td>
<td>PROCESS MODELLING & SIMULATION</td>
<td>100</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>MECM-106</td>
<td>LAB-I (SEPARATION PROCESS)</td>
<td>100</td>
<td>3</td>
<td></td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>MECM-107</td>
<td>LAB-II (ADVANCED HEAT TRANSFER)</td>
<td>100</td>
<td>3</td>
<td></td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>MECM-108</td>
<td>SEMINAR</td>
<td>100</td>
<td>1</td>
<td></td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>MECM-109</td>
<td>ASSIGNMENT</td>
<td>100</td>
<td>1</td>
<td></td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>MECM-110</td>
<td>COMPREHENSIVE VIVA</td>
<td>100</td>
<td>4</td>
<td></td>
<td>100</td>
<td>60</td>
</tr>
</tbody>
</table>

GRAND TOTAL

| | 1000 | 28 | 300 | 580 | 120 |
MECM 101 - SEPARATION PROCESSES

UNIT - I

UNIT - II

UNIT - III

UNIT - IV
Principle of membranes separation process, classification characterization & preparation of membrane, membranes modulus & application, liquid membranes and industrial application.

UNIT - V
Ternary and multicomponent system fractionation theories: Multicomponent Mixture: Equilibrium Data, Feed and Product Composition, Light and Heavy key components, Calculation of a number of plates required for a given separation, Minimum Reflux Ratio, No of Plates at total reflux, Relation between Reflux ratio and no of plates. Brief Description about Azeotropic and Extractive distillation.

REFERENCE BOOK
1. Coulson & Richardson Volume 1, Edition 6 (Chemical Engineering)
2. Coulson & Richardson Volume 2, Edition 6 (Chemical Engineering)
4. J.D. Seader “Separation process principles” Second Edition
5. Nath K. Membrane separation Technology PHI
MECM 102 - ADVANCED TRANSPORT PHENOMENON

UNIT-I
Velocity distribution in laminar flow The equations of change for isothermal flow: creeping flow around a solid sphere Equations of continuity, equation of motion, the equation of mechanical energy, application of Navier-Stokes equation to solve problems like falling film, flow in a tube, shape and surface of a rotating fluid.

Unit-II
Velocity distribution in turbulent flow, microscopic balance for isothermal system macroscopic balance for non isothermal system.

UNIT-III
Temperature distribution in solids and in laminar flow, The equations of change for nonisothermal flow: Equations of energy, use of equations of change to set up steady state heat transfer problems.

UNIT – IV
Temperature distribution in turbulent flow energy transport by radiation. Temperature fluctuations and the time smoothed temperature, time smoothing energy equation semi empirical expression for the turbulent energy flux.

UNIT-V
Concentration distribution in solid and in laminar flow The equations of change for multi component systems: Concentration distribution in turbulent flow macroscopic balance for multicomponent system.

REFERENCE BOOKS:
3. Transport Processes And Unit Operations-Geankoplis
MECM 103- REACTOR DESIGN

UNIT-I
Models for Non-Ideal flow Reactors: Two- parameter models- Real CSTR modeled using bypass and dead space, real CSTR modeled as two CSTR interchange, testing a model and determining its parameters.

UNIT-II
Catalysis and catalytic reactors: Design of reactors for gas solid reactions. Heterogeneous data analysis for reactor design; catalyst deactivation – Types of Deactivation, Moving bed Reactors, Packed Bed Catalytic Reactor, Reactors with Suspended Solid Catalyst.

UNIT-III
External diffusion effects on heterogeneous reactions- External resistance to mass Transfer: Mass transfer coefficient, mass transfer to a single particle, mass transfer limited reactions in packed beds, The Shrinking Core Model.

UNIT-IV
Introduction of Heterogeneous Reactions, Diffusion and reaction in porous catalysts- Diffusion and reaction in spherical Catalyst pellets, internal effectiveness factor, Falsified Kinetics, Overall effectiveness factor. G/L Reactions on Solid Catalyst: Trickles Beds, Slurry Reactors, Fluidized Bed Reactors.

UNIT-V
Non- isothermal reactor design- energy balance, nonisothermal adiabatic, CSTR, PFR, low-reactors at steady state, equilibrium conversion; multiple steady states- ignition- extinction curve.

UNIT-VI
Distribution of residence times for chemical reactors- ResidenceTime Distribution (RTD) Function, Measurement of the RTD, and Characteristics of the RTD, RTD in Ideal Reactors, Zero-Parameter Models, RTD and Multiple Reactions.

REFERENCE BOOKS:
MECM 104- ADVANCED HEAT TRANSFER

UNIT-I
General equation of change for energy, heat conduction equation in cylindrical coordinate, spherical coordinates. Heat conduction through a hollow cylinder. Critical thickness of insulation.

UNIT-II
Steady and unsteady state conduction is one, two and three dimensional cases. Finite difference method in steady and unsteady conduction. Two dimension steady state heat conduction in rectangular plates and semi infinite plates. Transient heat conduction in solid with finite conduction and convective resistance.

UNIT-III
Forced Convection: Laminar flow over flat plate Momentum equations of hydrodynamic boundary layer over a flat plate. Blasius solution of laminar boundary layer flows. Laminar and turbulent flow over a flat plate, turbulent flow in tube, cylinder and sphere. Analytical and semi analytical solutions.
Free convectionMomentum and energy equations for laminar free convection heat transfer on a flat plate. Equations for velocity and temperature in vertical and horizontal planes for cylinders and spheres.

UNIT-IV

UNIT - V
Design of compact heat exchangers, Heat transfer due to boiling liquefied metal heat transfer. Heat exchanger effectiveness and number of transfer unit.

REFERENCES BOOKS:
2. Heat Transfer J.P. Holman
3. Heat and mass transfer R.K. Rajput
4. Fundamentals of engineering heat and mass transfer. R.C.Sachdeva
MECM 105 - PROCESS MODELLING AND SIMULATION

UNIT-I
Introduction to modeling, a systematic approach to model building, classification of models. Conservation principles, thermodynamic principles of process systems.

UNIT-II
Development of steady state and dynamic lumped and distributed parameter models based on first principles.

UNIT-III

UNIT-IV

UNIT-V

REFERENCES:
<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>TOTAL MARKS</th>
<th>CREDIT C(I)</th>
<th>END SEM EXAM MARKS</th>
<th>SESSIONAL MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MECM-201</td>
<td>PROCESS PLANT OPTIMIZATION TECHNIQUE</td>
<td>100</td>
<td>4</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MECM-202</td>
<td>COMPUTER AIDED DESIGN FOR PROCESS EQUIPMENT</td>
<td>100</td>
<td>3</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MECM-203</td>
<td>ADVANCED PROCESS DYNAMICS & CONTROL</td>
<td>100</td>
<td>3</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MECM-204</td>
<td>PRODUCTIVITY & MANAGEMENT</td>
<td>100</td>
<td>3</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MECM-205</td>
<td>INDUSTRIAL POLLUTION CONTROL</td>
<td>100</td>
<td>3</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MECM-206</td>
<td>LAB-III(COMPUTER AIDED DESIGN FOR PROCESS EQUIPMENT)</td>
<td>100</td>
<td>3</td>
<td>60 24</td>
<td>40 24</td>
<td>60 30</td>
</tr>
<tr>
<td>7</td>
<td>MECM-207</td>
<td>LAB-IV(ADVANCED PROCESS DYNAMICS & CONTROL)</td>
<td>100</td>
<td>3</td>
<td>60 24</td>
<td>40 24</td>
<td>60 30</td>
</tr>
<tr>
<td>8</td>
<td>MECM-108</td>
<td>SEMINAR</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>100 60</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MECM-109</td>
<td>ASSIGNMENT</td>
<td>100</td>
<td>1</td>
<td>1</td>
<td>100 60</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MECM-110</td>
<td>COMPREHENSIVE VIVA</td>
<td>100</td>
<td>4</td>
<td>1</td>
<td>100 60</td>
<td></td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td></td>
<td>1000</td>
<td>28</td>
<td>300</td>
<td>580</td>
<td>120</td>
</tr>
</tbody>
</table>
MECM 201 - PROCESS PLANT OPTIMIZATION TECHNIQUES

UNIT - I
Introduction to optimization and its scope in chemical process design, Developing Models for Optimization, Formulation of objective function, Optimization Theory and Methods: Basic concept of optimization of Unconstrained Function, One dimensional search, Unconstrained Multivariable optimization.

UNIT - II
Linear programming and Applications, Simplex Method, Nonlinear programming with constraints, quadratic programming, successive quadratic programming.

UNIT - III
Mixed integer programming, Optimization in large scale plant design and operation, integrated planning, scheduling and control in the process industries.

UNIT - IV
Application of optimization: Heat transfer and Energy conservation, Separation Process, Fluid flow system, chemical reaction design and operation.

UNIT - V

REFERENCE BOOKS
2. Numerical Methods in Engineering and Science Dr B.S Garewal
MECM 202 - COMPUTER AIDED DESIGN FOR PROCESS EQUIPMENTS

UNIT - I
General design consideration, Optimum design, Property estimation, Material and Energy balance, introduction to special software for steady and dynamic simulation of chemical engineering systems.

UNIT - II
Computer aided design of heat transfer equipment. Design of double heat exchangers, shell and tube heat exchangers, condensers and evaporators.

UNIT - III
Computer aided design of mass transfer equipment. Design of mass transfer equipments: Design of distillation column, Absorption tower bothplate as well as packed type.

UNIT - IV
Computer aided design of chemical reactors, Batch reactor, continuous stirred tank reactor and Plug flow reactor.

UNIT - V
Interactive computer graphics and drafting Simulation software, spread sheeting, Flowsheeting software, Integrated software system, development of software programs.

REFERENCES
MECM 203 - ADVANCED PROCESS DYNAMICS & CONTROL

UNIT-I

UNIT-II
Frequency response analysis, design of control system, Controller tuning and process identification. Ziegler-Nichols tuning methods, Bode-Nyquist Plots, Bode stability Criterion, Nyquist stability Criterion. Feedback Control of systems with large dead time or inverse response.

UNIT-III
Control systems with multiple loops, Advance control techniques cascade, selective and split - Range control, feed forward and ratio control, adaptive and inferential control systems.

UNIT-IV

UNIT-V
Sample Data Controllers: Basic review of Z transforms, Response of discrete systems to various inputs. Open and closed loop response to step, impulse and sinusoidal inputs, closed loop response of discrete systems. Design of digital feed back controllers. Introduction to control of non-linear systems.

REFERENCE BOOKS
MECM 204 - PRODUCTIVITY AND MANAGEMENT

UNIT- I
Introduction to operations research – Development of operational research, definition, characteristics, scopes, opportunity and operation research in problem solving. Limitations of operational research and applications. Differences between manufacturing and service operations.

UNIT- II
Model, types of model, constructing model and deriving solution from model, operations research model in practices, computer software for operational research. Approach of the assignment model, models with price Breaks, with Restrictions.

UNIT- III

UNIT- IV
Optimization- Techniques, planning and control models (Network techniques), deterministic case. Maximization and Minimization problem – Development and construction. PERT and CPM analysis Difference between CPM and PERT.

UNIT- V
Analysis for operations management, cost data for operations management – Break even analysis, investment analysis

REFERENCE BOOKS
J.K.Sharma Operations Research Theory & Applications
Pream Kumar Gupta, D.S. Hira, Operations Research
J.K Sharma Operations Research Theory and Application
MECM 205- INDUSTRIAL POLLUTION CONTROL

UNIT-I
Major problems and pollution in environment, Environmental gradients, Tolerance and adaptation, Environmental laws and Provisions, Guidelines for pollution and health aspects for different industries, environmental impact assessment, environmental auditing

UNIT-II
Problems concerned to air pollution and its effects, meteorological aspects of air pollution, chemical and photochemical reactions in atmosphere, Principles and designing of air pollution controlling and abating instruments, Mitigating measures

UNIT-III
Sources of water pollution and standards for water for different purposes, water treatment, effect of waste water on ecology Noise pollution, its measurement and mitigating measures

UNIT-IV
Sources and classification of solid waste, properties of solid waste, transportation and treatment of MSW and ISW (Industrial Solid Waste), Hazardous waste, its storage and treatment

UNIT-V
Basic concepts of LCA, Waste minimization by reuse and recycling, Case study for different industries for waste minimization and environmental perspectives.

REFERENCES:
2. C. S. Rao, Environmental Pollution Control Engineering; New Age International Publishers
3. H.S.Peavy, D.R.Rowe and George Tchobanoglous, Environmental Engineering; McGraw Hill International
INSTITUTE OF ENGG., JIWAJI UNIVERSITY, GWALIOR
CHOICE BASED CREDIT SYSTEM (w.e.f.2018-2020 Batch)
MASTER OF TECHNOLOGY (THIRD SEMESTER)

BRANCH : CHEMICAL ENGINEERING

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>TOTAL MARKS</th>
<th>CREDIT MARKS</th>
<th>END SEM EXAM MARKS</th>
<th>SESSIONAL MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MECM-301</td>
<td>CENTRIC ELECTIVE-I</td>
<td>100</td>
<td>4</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MECM-302</td>
<td>CENTRIC ELECTIVE-II</td>
<td>100</td>
<td>4</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ICA-402</td>
<td>INTELLECTUAL PROPERTY RIGHTS</td>
<td>100</td>
<td>2</td>
<td>60 24</td>
<td>40 24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MEDC-303</td>
<td>DISSERTATION PART-I</td>
<td>100</td>
<td>12</td>
<td></td>
<td>40 24</td>
<td>60 30</td>
</tr>
<tr>
<td>5</td>
<td>MEDC-304</td>
<td>SEMINAR</td>
<td>100</td>
<td>1</td>
<td></td>
<td>100 60</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MEDC-305</td>
<td>ASSIGNMENT</td>
<td>100</td>
<td>1</td>
<td></td>
<td>100 60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MEDC-306</td>
<td>COMPREHENSIVE VIVA</td>
<td>100</td>
<td>4</td>
<td></td>
<td>100 60</td>
<td></td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td></td>
<td></td>
<td>700</td>
<td>180</td>
<td>460</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ELECTIVE-I
(A) DATA BASE PROCESS PLANT DESIGN
(B) BIOCHEMICAL ENGINEERING
(C) NANOTECHNOLOGY IN CHEMICAL ENGG.

ELECTIVE-II
(A) DESIGN OF PIPING SYSTM FOR CHEMICAL PLANTS
(B) ENERGY MANAGEMENT
(C) FLUIDIZATION ENGINEERING
MECM-301(A) DATA BASE FOR PROCESS PLANT DESIGN

UNIT-I

UNIT-II

UNIT-III
Vaporizers and Reboilers: Vaporizing processes, Reboiler arrangements, Classification of vaporizing exchangers, Heat flux and temperature difference Limitations, Relation between maximum flux and maximum film coefficient,

UNIT-IV

UNIT-V
Introduction, Sieve Trays: Tower Diameter, Plate Spacing, Entrainment, Weepage, Tray Layout, Valve trays: Flooding and Entrainment, Tray Spacing, Foaming Tray type, Tray diameter and Lay out, Hydraulic Parameters.

REFERENCE BOOK:
4. Coulson and Richardson Chemical Engineering Volume 6 Pergamon Press.
MECM -301(B) BIOCHEMICAL ENGINEERING

UNIT-I
Introduction to microbiology: Biophysics and the cell doctrine, the structure of cells, important cell types, from nucleotides to RNA and DNA, amino acids into proteins.

UNIT-II
Kinetics of enzyme catalyzed reaction: the enzyme substrate complex and enzyme action, simple enzyme kinetics with one and two substrates, other patterns of substrate concentration dependence, modulation and regulation of enzyme activity, other influences on enzyme activity.

UNIT-III

UNIT-IV
Kinetics of cellular growth in batch and continuous culture, models for cellular growth – unstructured, structured and cybernetic models. Thermal death kinetics of cells and spores

UNIT-V
Introduction to metabolic pathways, biosynthesis, transport across cell membranes, end products of metabolism, stoichiometry of cell growth and product formation.

UNIT-VI
Transport phenomena in bioprocess systems: Gas-liquid mass transfer in cellular systems, determination of oxygen transfer rates, overall kLa’ estimates and power requirements for sparged and agitated vessels, scaling of mass transfer equipment, heat transfer.

REFERENCE
MECM -301(C) NANOTECHNOLOGY IN CHEMICAL ENGINEERING

UNIT- I
Nano materials and nano composites: Introduction, surface of nanoparticles, thermal phenomena, surface energy-general considerations, phase transitions, thermodynamics, heat capacity of nano particles, Phase transformations of nanoparticles, nanoparticle Structure fluctuations.

UNIT- II
Gas Phase Synthesis of Nanoparticle: Fundamental considerations, inert gas condensation, physical and chemical vaporsynthesis, laser ablation, Microwave plasma process, flame aerosol process, coated particle synthesis of nano particles, sol-gel and Hydrothermal processes, freeze drying attrition, Chemical vapor deposition methods for producing nano particles.

UNIT- III
Properties of nano particles:
a) Magnetic properties: super paramagnetic properties, applications, exchange coupled magnetic nano materials.
b) Optical properties: quantum confinement, quantum dots and other lumophores, metallic and semiconducting nano particles, special luminescent nano particles, electroluminescence, electrochromic and photochromic materials, magneto-optic applications.

UNIT- IV
Electrical properties: electrical conductivity in nano-rods and nanotubes, Photoconductivity of nano-rods, electrical conductivity of nano composites. Mechanical Properties: General considerations, influence of grain size, sintering temperature, super plasticity, filled polymer composites, nano fluids and applications of nano fluids.

UNIT- V
Carbon Nanotubes: nano rods and nano plates, Layered structures, compounds with layers structures, nano tubes and nanorods from materials other than carbon. Thin films: Kinetic theory of gases, concepts vacuum, Thermal evaporation, sputtering, ion implantation concepts in nanomaterial science.

REFERENCE BOOKS
MECM -302 (A) DESIGN OF PIPING SYSTEMS FOR CHEMICAL PLANTS

UNIT-I
Fundamentals of fluid flow through pipes-Calculation of pressure drop for Newtonian & non-Newtonian fluids, incompressible & compressible fluids and two-phase flow, Calculation of economic pipe diameter, insulation thickness, equivalent length, Slurry transport and pipelines

UNIT-II
Engineering flow diagram, nomenclature and equipment elevation Piping layout, line pressure drop, piping analysis, stress analysis of curved pipelines, yard piping

UNIT-III
Piping codes, standards and specifications-ASME, ASTM, API Piping components-pipes, pipe ends, pipe fittings, end fittings, flanged joints, valves, valve codes and standards, valve classification, valve components, bolts, gaskets (fasteners and sealing elements)

UNIT-IV
Piping materials-selection, cost and installation Design of heat exchanger piping, Thermosyphon reboiler piping, Pressure relief piping Steam tracing design, Thermowell design, Expansion loops and expansion joints

UNIT-V
Design of pipeline network-Pinch analysis Pipeline operation and maintenance-friction reduction, cleaning, coating, wear, leak detection, water hammer

REFERENCES
1. Peter Smith, Fundamentals of piping design, Gulf Publishing HouseKellog, Design of pipeline systems
2. Sahu, Handbook of Piping Design
MECM 302-(B) ENERGY MANAGEMENT

UNIT-I

UNIT-II

UNIT-III

UNIT-IV

UNIT-V
Electrochemical Energy Conversion & Storage: EMF, reversible cells and irreversible cells, reversible electrodes, free energy changes and emf in cells, effect of cell temperature on batteries, derivation of number of electrons involved in a cell reactions, constant power, effect of battery design. Primary batteries, secondary batteries – lead acid, nickel cadmium, nickel metal hydride, silver oxide zinc system, energy management in chemical process plants

REFERENCE BOOKS
MECM-302(C) FLUIDIZATION ENGINEERING

UNIT-I
INTRODUCTION
The fluidized state, Nature of hydro dynamic suspension particle-particle forces, species of fluidization, Regimization of the fluidized state, operating models for fluidizations systems, Application of fluidization systems.

UNIT-II
HYDRODYNAMICS OF FLUIDIZATION SYSTEMS
General bed behavior pressure drop, Flow regimes, Incipient fluidization, pressure fluctuations, phase hold ups, Measurement techniques, Empirical correlations for solids holdup, liquid holdup and gas holdup, Flow models - generalized wake model, structural wake model and other important models.

UNIT-III
SOLIDS MIXING AND SEGREGATION
Phase juxtaposition operation shifts, Reversal points, Degree of segregation, Mixing segregation equilibrium, Generalized fluidization of poly disperse systems, liquid phase mixing and gas phase mixing.

UNIT-IV
HEAT AND MASS TRANSFER FLUIDIZATION SYSTEMS
Mass transfer - gas-liquid mass transfer, Liquid solid mass transfer and wall to bed mass transfer, Heat transfer - column wall - to - bed heat transfer, Immersed vertical cylinder-to-bed heat transfer, Immersed horizontal cylinder to-bed heat transfer.

UNIT-V
MISCELLANEOUS SYSTEMS
Conical fluidized bed, Moving bed, Slurry bubble columns, Turbulent bed contactor, Two phase and three phase inverse fluidized bed, Draft tube systems, Semi fluidized bed systems, Annular systems, typical applications, Geldart's classification for power assessment, Powder characterization and modeling by bed collapsing.

REFERENCES:
INSTITUTE OF ENGG., JIWAJI UNIVERSITY, GWALIOR
CHOICE BASED CREDIT SYSTEM (w.e.f.2018-2020 Batch)
MASTER OF TECHNOLOGY (FOURTH SEMESTER)

BRANCH: CHEMICAL ENGINEERING

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE CODE</th>
<th>COURSE NAME</th>
<th>TOTAL MARKS</th>
<th>CREDIT C(I)</th>
<th>END SEM EXAM MARKS</th>
<th>SESSIONAL MARKS</th>
<th>PRACTICAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MECM-401</td>
<td>DISSERTATION PART-II</td>
<td>300</td>
<td>20</td>
<td>100</td>
<td>60</td>
<td>200</td>
</tr>
</tbody>
</table>

GRAND TOTAL

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>