

Dr. Mukul Tailang Professor School of Studies in Pharmaceutical Sciences Jiwaji University Gwalior (M.P.)

ВV

GLYCOSIDES

- Glycosides are the molecules in which a sugar part is bound to some other non-sugar part.
- Glycosides play numerous important roles in living organisms.
- Plants store important chemicals in the form of inactive glycosides; if these chemicals are needed, the glycosides are brought in contact with water and an enzyme and the sugar part is broken off, making the chemical available for use.
- Many such plant glycosides are used as medications.

GLYCOSIDES

- Formally, a glycoside is any molecule in which a sugar group is bonded through its anomeric carbon to another group via a glycosidic bond.
- The sugar group is known as the Glycone and the non-sugar group as the Aglycone or Genin part of the glycoside.
- The glycone can consist of :
 - Single sugar group (Monosaccharide) or
 - Several sugar groups (Oligosaccharide).

Glycosidal Sugars:

Sugars found in glycosides may be

- Monosaccharides
 - -Glucose
 - Rhamnose
 - Fructose
- **Deoxysugars** (more rare)
 - Cymarose
 - found in the cardiac glycosides

TERMS USED TO DESCRIBE GLYCOSIDES

A Glycoside is a

Glucoside

- Has glucose as the sugar component

Pentoside

- Has a sugar such as arabinose

Rhamnosides

- Contains rhamnose

Rhanmoglucosides

- Contains both rhamnose and glucose

Glycosidic bond

- A glycosidic bond is a certain type of a functional group that joins alcoholic group of a Carbohydrate molecule to an aglycone molecule.
- A substance containing a glycosidic bond is a Glycoside.

Glycosidic bond

Classification of Glycosides

Glycosides can be classified by :

- The nature of Glycone
- Number of sugars
- Nature of the glycoside
- Botanical source
- Therapeutic use
- The type of Glycosidic Bond
- The Glycosidal Linkage and
- Chemical nature of Aglycone.

By Glycones

- If the glycone group of a glycoside is glucose, then the molecule is a Glucoside.
- If it is fructose, then the molecule is a **Fructoside**.
- If it is glucuronic acid, then the molecule is a Glucuronide.

Number of sugars:

- One sugar monosides e.g. Salicin.
- Two sugar Biosides e.g. Diosmin.
- Three sugars Triosides e.g

e.g. Digoxin.

Nature of the glycoside:

- Primary glycosides: Originally present in the plant
 - -e.g. Purpurea A
- Secondary glycosides: Resulted from removal of one sugar from the primary glycosides
 - -e.g. Digitoxin

Botanical source:

- Digitalis glycosides
- •Senna glycosides.

Therapeutic use:

- •Analgesic glycosides.
- Purgative glycosides.
- Cardiac glycosides.

Classifications of glycosides according to their therapeutic effects

CHF and cardiac muscles stimulators:

- Digitalis glycosides: digoxin, digitoxin, gitoxin (Fox glove leaves)
- Ouabain: Strophanthus gratus seeds
- K-strophanthin -*Strophanthus kombe* seeds
- Scillaren A,B which isolated from red and white Squill bulbs
- Convolloside: Convallaria majalis Lily of the Valley.

Laxative group of glycosides:

- Sennoside A,B,C,D (Senna leaves and fruits)
- Cascaroside A,B (Cascara bark)
- Frangulin and glucofrangulin (Frangula bark)
- Aloin and barbaloin (Aloe vera and A. barbadensis)

Local irritant group:

- Sinigrin (Black mustered seeds_Brassica nigra)
- Sinalbin (White mustered seeds_Brasica alba)

Analgesics and antipyretics:

- Salicin <u>hydrolysis</u> Salisylic acid (Willow or Salix bark)

Keeping elasticity of blood vessels like:

- Rutin, Rutoside (Bitter orange peels, Lemon peels)

Anti-inflammatory group:

- Aloin for acne &
- Glycyrrhizinin the treatment of peptic ulcer

By type of glycosidic bond **Depending on whether the** glycosidic bond lies "above" or "below" the plane of the cyclic sugar molecule, glycosides are classified as:

> »α-glycosides »β-glycosides

α-& β-glycosides

 α – methyl glucoside

 β – methyl glucoside

 β – methyl glucoside

By Linkage

Atom from the aglycone involved in the glycosidic linkage:

Aglycone- O- Sugar Aglycone- C- Sugar Aglycone- S- Sugar Aglycone- N- Sugar O-glycosides C-glycosides S-glycosides N-glycosides

$$-O - H + H - O - C_{6}H_{11}O_{5} \longrightarrow -O - C_{6}H_{11}O_{5}$$

$$O - Glycoside$$

$$\rightarrow C - H + H - O - C_{6}H_{11}O_{5} \longrightarrow A - C_{6}H_{11}O_{5}$$

$$C - Glycoside$$

$$N - H + H - O - C_{6}H_{11}O_{5} \longrightarrow N - C_{6}H_{11}O_{5}$$

$$N - Glycoside$$

$$-S - H + H - O - C_{6}H_{11}O_{5} \longrightarrow -S - C_{6}H_{11}O_{5}$$

$$S - Glycoside$$

O,C,S & N – GLYCOSIDES

By aglycone

Glycosides are also classified according to the chemical nature of the aglycone.

For purposes of biochemistry and pharmacology, this is the most useful classification.

- »Anthraquinone glycosides
- » Simple phenolic glycoside
- » Thioglycosides
- » Flavonoid glycosides
- » Steroidal glycosides or cardiac glycosides.
- » Saponins
- »Coumarin glycosides
- » Cyanogenic glycosides

Anthraquinone glycosides

Frangula emodine

Simple phenolic glycoside

Salicine

Glycoside of Salysilic acid

Thioglycosides

S - Glucose| $CH_2 = CH - CH_2 - C = N - O - SO_3K$ Sinigrin

Flavonoid glycosides

Steroidal glycosides or cardiac glycosides

Saponins

Diosgenin

Hecogenin

 α -amyrin

Coumarin glycosides

Coumarin

Cyanogenic glycosides

Amygdalin

Linamarin